Leuze electronic CANopen-Interface

Measuring Light Curtain CML 720
 Object describtion

CANopen Configuration

The CML 7xx light curtains communication is corresponding according the CANopen Profile „DS3101" and „DS401" The communication profil area from index 1000h - 1FFFh contains the CANopen standard parameters.
Product specific parameters starts at index 2000h
Communication specific parameters are automatically persistent. To save product specific settings against power failure, it's necessary to send save command (Index 0x2200)

CANopen-specific objects								
Parameter	Index (Hex.)	Subindex (Hex.)	Data type	Access	Min.Value	Max. Value	Default	Remark
Device Type	1000			RO			0x008B0191	
Error Register	1001			RO				
COB-ID-SYNC	1005			RW			0x00000080	
Receiver Product Name	1008			CONST				
Hardware Revision	1009			CONST				
Software Revision	100A			CONST				
Producer Heartbeat Time	1017			RW			0	Required for heartbeat meachanism
Identity Object	1018			RO				Contains general information regarding the device
PDO_COMMUNICATION_PARAMETER_1	1800			RW				Character of PDO 1
PDO_COMMUNICATION_PARAMETER_2	1801			RW				Character of PDO 2
PDO_COMMUNICATION_PARAMETER_3	1802			RW				Character of PDO 3
PDO_COMMUNICATION_PARAMETER_4	1803			RW				Character of PDO 4
PDO_MAPPING_PARAMETER_1	1A00		t32U	RW				Mapped objects of PDO 1
PDO_MAPPING_PARAMETER_2	1A01		t32U	RW				Mapped objects of PDO 1
PDO_MAPPING_PARAMETER_3	1A02		t32U	RW				Mapped objects of PDO 1
PDO_MAPPING_PARAMETER_4	1A03		t32U	RW				Mapped objects of PDO 1

Leuze electronic CANopen-Interface

Measuring Light Curtain CML 720
Object describtion

Device Description								
Parameter	Index (Hex.)	Subindex (Hex.)	Data type	Access	Min.Value	Max. Value	Default	Remark
Vendor name	2000			RO				Leuze electronic
Vendor Text	2001			RO				The sensor people
Receiver Product ID	2002			RO				Receiver
Receiver Serial Number	2003			RO				Receiver
Transmitter Product Name	2008			RO				Transmitter
Transmitter Product ID	2009			RO				Transmitter
Transmitter Serial Number	200A			RO				Transmitter
Device characterisitcs specifiy the beam distance, the number of physical / logical beams, number of arrays (16 single beams) and the cycle time of the device.								
Beam Distance	200B	1	t16U	RO				
Number of physical beams	200B	2	t16U	RO				
Number of configured logical beams	200B	3	t16U	RO				If parallel beam scanning configured, number of logical beams are same as physical (optical) beams. In case of diagnol scanning, number of logical beams will be doubled.
Number of optical cascades	200B	4	t16U	RO				
Device cycle time [$\mu \mathrm{s}$]	200B	5	t16U	RO				Period of one measuring /scanning loop. Min. 1 ms

Leuze electronic CANopen-Interface

Measuring Light Curtain CML 720
Object describtion

Global Settings								
Global settings allows setting of beam functions (parallel-/diagonal-/cross-beam), counting direction and min. object size for analysis (smoothing). Min. size of a hole in e.g. a web will be configured by inverted. smoothing.								
Parameter	Index (Hex.)	$\begin{aligned} & \text { Subindex } \\ & \text { (Hex.) } \\ & \hline \end{aligned}$	Data type	Access	Min.Value	Max. Value	Default	Remark
Mode of operation	2100	1	t08U	RW	0	3	0	0: Parallel beam scanning 1: Diagonal beam scanning 2: Cross beam scanning
Counting direction	2100	2	t08U	RW	0	1	0	0: normal - starting at the connector side 1: Inverted - starting opposite the connector side
Smoothing	2100	3	t08U	RW	1	$\begin{aligned} & \hline \text { MAX } \\ & \text { T08U } \end{aligned}$	1	Less than N interrupted beams will be ignored
Inverted Smoothing	2100	4	t08U	RW	1	$\begin{aligned} & \text { MAX } \\ & \text { T08U } \end{aligned}$	1	Less than N not interrupted beams will be ignored

Additional Settings								
Measuring values are suppressed until the configured number of consistent scans is reached. During latch time period all measurement values are accumulated and latched.								
Parameter	Index (Hex.)	$\begin{aligned} & \text { Subinde } \\ & \mathbf{x} \\ & \text { (Hex.) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Access	Min.Value	Max. Value	Default	Remark
	2101	1	t08U	RW	0			reserved
Filter depth	2101	2	t08U	RW	0	$\begin{aligned} & \text { MAX } \\ & \text { T08U } \end{aligned}$	1	Number of consistent scans until measuring result will be passed to the interface
Latch time (hold function)	2101	3	T16U	RW	0	$\begin{aligned} & \text { MAX } \\ & \text { T16U } \end{aligned}$	0	Latch time in ms During latch time period all measurement values are accumulated and latched

Leuze electronic CANopen-Interface

Measuring Light Curtain CML 720
Object describtion

Cascading Configuration

To avoid interferences multiple light curtains can be cascaded. The master generates the cyclic trigger signal, the slaves start their scanning after the configured delay time (different delay values required).

Parameter	Index (Hex.)	$\begin{array}{l}\text { Subindex } \\ \text { (Hex.) }\end{array}$	Data type	Access	Min.Value	Max. Value	Default	Remark
Cascading	2102	1	t08U	RW	0	1	0	0: inactiv (continuous scanning) 1: activ (sensor waiting for trigger-signal) Notice: In case of working in cascading application, it's necessary to set master on 1 (activ)
Function mode	2102	2	t08U	RW	0	1	0	0: Slave (waiting for trigger signal) 1: Master (generating trigger signal)
Delay trigger \rightarrow start scanning	2102	3	T16U	RW	500	$\begin{aligned} & \text { MAX } \\ & \text { T16U } \end{aligned}$	500	Delay time in $\boldsymbol{\mu s}$ (starting at rising edge of trigger signal until start of measuring / scanning cycle)
Triggerpulse width	2102	4	T16U	RO			100	Puls width of master-trigger-puls in $\mu \mathrm{s}$ (Just for information)
Master Cycletime	2102	5	T16U	RW	1	6500	1	Period of a trigger loop in ms

Leuze electronic CANopen-Interface

Measuring Light Curtain CML 720
Object describtion

Teach Settings								
In most of applications it is generally recommended to store teach results power fail safe. Corresponding to the selected function reserve at teach operation, the sensitivity will be higher or smaller. Small function reserve $=$ high sensitivity								
Parameter	Index (Hex.)	Subindex (Hex.)	Data type	Access	Min.Value	Max. Value	Default	Remark
Teach Count	2103	1	t08U	RO			10	Depending of environmental conditions resp. application conditions it can happen, that systems takes more than one teach loop after a teach command.
Teach Mode	2103	2	t08U	RW	0	1	0	0: Save persistent to Flash 1: Save transient to RAM
Responsitivity after teach	2103	3	t08U	RW	0	2	0	0 : High function reserve for robust application 1: Medium function reserve 2: Small function reserve
Teach Status	2400	1	t08S	RO	0	$\begin{aligned} & \hline \text { MAX } \\ & \text { T08U } \end{aligned}$		Feedback about last teach result: 0x00: Teach ok 0x01: Teach busy 0×80 : Teach error (Bit8 = Errorbit)

Leuze electronic CANopen-Interface

Measuring Light Curtain CML 720
Object describtion

Blanking Configuration								
Up to 4 blanking areas can be configured.								
Deactivated beams can be setted to 0,1 or the logical value of the neighbour beam. If autoblanking is activated, the number of choosen blanking areas will be configured with teach command. Details see appendix B:								
Parameter	Index (Hex.)	$\begin{aligned} & \text { Subindex } \\ & \text { (Hex.) } \end{aligned}$	Data type	Access	Min.Value	Max. Value	Default	Remark
Number of autoblanking areas	2104	1	t08U	RW	0	4	0	Required number of blanking areas if using autom. teach
Autoblanking (during teach)	2104	2	t08U	RW	0	1	0	0 : Inactiv (only manual configuration possible) 1: Activ (blanking areas autom. configured by teach)
Function blanking area 1	2104	3	t16U	RW	0	4	0	0 : No beams blanked 1: Logical value 0 for blanked beams 2: Logical value 1 for blanked beams 3: Logical value = same as neighbour beam with lower beam number 4: Logical value = same as neighbour beam with higher beam number
Start beam blanking area 1	2104	4	t16U	RW	1	$\begin{aligned} & \text { MAX } \\ & \text { BEAM } \end{aligned}$	1	Start beam of blanking area
End beam blanking area 1	2104	5	t16U	RW	1	MAX BEAM	1	End beam of blanking area
Function blanking area 2	2104	6	t16U	RW	0	4	0	0: No beams blanked 1: Logical value 0 for blanked beams 2: Logical value 1 for blanked beams 3: Logical value = same as neighbour beam with lower beam number 4: Logical value $=$ same as neighbour beam

Leuze electronic CANopen-Interface

Measuring Light Curtain CML 720
Object describtion

								with higher beam number
Start beam blanking area 2	2104	7	t16U	RW	1	MAX BEAM	1	Start beam of blanking area
End beam blanking area 2	2104	8	t16U	RW	1	MAX BEAM	1	End beam of blanking area
Function blanking area 3	2104	9	t16U	RW	0	4	0	0: No beams blanked 1: Logical value 0 for blanked beams 2: Logical value 1 for blanked beams 3: Logical value = same as neighbour beam with lower beam number 4: Logical value = same as neighbour beam with higher beam number
Start beam blanking area 3	2104	10	t16U	RW	1	MAX BEAM	1	Start beam of blanking area
End beam blanking area 3	2104	11	t16U	RW	1	$\begin{aligned} & \text { MAX } \\ & \text { BEAM } \end{aligned}$	1	End beam of blanking area
Function blanking area 4	2104	12	t16U	RW	0	4	0	0: No beams blanked 1: Logical value 0 for blanked beams 2: Logical value 1 for blanked beams 3: Logical value = same as neighbour beam with lower beam number 4: Logical value $=$ same as neighbour beam with higher beam number
Start beam blanking area 4	2104	13	t16U	RW	1	MAX BEAM	1	Start beam of blanking area
End beam blanking area 4	2104	14	t16U	RW	1	MAX BEAM	1	End beam of blanking area

Leuze electronic CANopen-Interface

Measuring Light Curtain CML 720
 Object describtion

Code Analysis Settings								
Customer specific function	Index (Hex.)	Subindex (Hex.)	Data type	Access	Min.- Value	Max. Value	Default	Remark
Analysis function	2105	1	T32U	RW	0	1	0	0: Deactivated 1: Activated
Mask	2105	2	T32U	RW	0	MAX_- T32U	0	Mask to choose trigger pattern
Value	2105	3	T32U	RW	0	MAX T32U	0	Trigger pattern
Code	2105	4	T32U	RW	0	MAX T32U	0	Mask to choose code-values

Leuze electronic CANopen-Interface

Measuring Light Curtain CML 720
Object describtion

In- / Outputs - Configuration of Pin 2 and Pin 5								
The digital inputs / outputs can be defined as PNP or NPN working. Thus applying to all I/Os simultaneously. Details see appendix C:								
Parameter	Index (Hex.)	Subindex (Hex.)	$\begin{array}{\|l} \hline \text { Data } \\ \text { type } \\ \hline \end{array}$	Access	Min.Value	Max. Value	Default	Remark
Digital IO switching level	2150		Bool	RW	0	1	1	0: Transistor NPN 1: Transistor PNP
Configuration Pin 2 (function) Configuration of In-/Outputs: Pin 2 and/or 5								
Pin 2: Output Function	2151	1	t08U	RW	0	3	0	0: Deactivated 1: Switching output (area 1..32) 2: Warning output 3: Trigger output
Pin 2: Input Function	2151	2	t08U	RW	0	2	0	0: Deactivated 1: Trigger input 2: Teach input
Pin 2 Switching level	2151	3	t08U	RW	0	1	0	0: Normal -light switching 1: Inverted - dark switching
Pin 2: Selection Input / Output	2151	4	t08U	RW	0	1	1	0: Output 1: Input
Configuration Pin 5 (function)								
Pin 5: Output Function	2152	1	t08U	RW	0	3	0	0: Deactivated 1: Switching output (area 1..32) 2: Warning output 3: Trigger output
Pin 5: Input Function	2152	2	t08U	RW	0	2	0	0 : Deactivated 1: Trigger input 2: Teach input
Pin 5: Switching level	2152	3	t08U	RW	0	1	0	0: Normal -light switching 1: Inverted - dark switching
Pin 5: Selection Input / Output	2152	4	t08U	RW	0	1	1	0: Output 1: Input

Leuze electronic CANopen-Interface

Measuring Light Curtain CML 720

Object describtion

Digital Output Pin 2 SettingsUp to 4 timer functions configurable. Max. time period are 65 sec .								
Output has to be assigned to an area 1-32. For Pin $2=$ Index 2155sub3 resp. Pin $5=$ Index 2156 sub4 Activate the selected area by entering 1 at corresponding position in 32 bit word. Ascending from right with area 01. Details see appendix C:								
Operation mode of time unit	2155	1	t08U	R/W	0	4	0	0: Deactivated 1: ON delay 2: OFF delay 3: Pulse stretching 4: Spike supression
Delay time for defined operation mode	2155	2	t16U	R/W	0	$\begin{aligned} & \text { MAX } \\ & \text { T16U } \end{aligned}$		0...65535[ms]
Area mapping 32.. 1 (logical OR)	2155	3	t32U	R/W	0	$\begin{aligned} & \text { MAX } \\ & \text { T32U } \end{aligned}$	0	Logical OR interconnection for mapping areas to output
Digital Output Pin 5 Settings								
Operation mode of time unit	2156	1	t08U	R/W	0	4	0	0: Deactivated 1: ON delay 2: OFF delay 3: Pulse stretching 4: Spike supression
Delay time for defined operation mode	2156	2	t16U	R/W	0	$\begin{aligned} & \text { MAX } \\ & \text { T16U } \end{aligned}$		0...65535[ms]
Area mapping 32.. 1 (logical OR)	2156	3	t32U	R/W	0	$\begin{aligned} & \text { MAX } \\ & \text { T32U } \end{aligned}$	0	Logical OR interconnection for mapping areas to output

Leuze electronic CANopen-Interface

Measuring Light Curtain CML 720
 Object describtion

Area Configuration								
How to configure up to 32 areas in manual way. Configuration of area: Define condition to ensure that area will be logical 1 or 0 . If working in diagonal- or cross-beam mode, insert number of logical beams. Details see appendix A:								
Parameter	$\begin{aligned} & \text { Index } \\ & \text { (Hex.) } \end{aligned}$	$\begin{aligned} & \text { Subindex } \\ & \text { (Hex.) } \end{aligned}$	$\begin{aligned} & \text { Data } \\ & \text { type } \end{aligned}$	Access	Min.Value	Max. Value	Default	Remark
Configuration area 1	2170							
Area	2170	1	t08U	RW	0	1	0	0: Deactivated 1: Activated
Logic conditions	2170	2	t08U	RW	0	1	0	0 : Normal - light switching 1: Inverted - dark switching
Start beam	2170	3	t16U	R/W	1	0xFFFE	1	1 65534
End beam	2170	4	t16U	RW	1	0xFFFFE	1	165534
Number of beams for condition ON	2170	5	t16U	RW	0	MAX_BEAM	0	$0 . .1776$
Number of beams for condition OFF	2170	6	t16U	RW	0	MAX_BEAM	0	$0 \ldots 1776$
Target center	2170	7	t16U	RW	0	MAX_BEAM	0	$0 . . .1776$
Target width	2170		t16U	R/W	0	MAX_BEAM	0	$0 \ldots 1776$

Configuration area 2	2171							
Area	2171	1	t08U	RW	0	1	0	0: Deactivated 1: Activated
Logic conditions	2171	2	t08U	RW	0	1	0	0: Normal - light switching 1: Inverted - dark switching
Start beam	2171	3	t16U	R/W	1	0xFFFE	1	1 65534
End beam	2171	4	t16U	RW	1	0xFFFE	1	1.... 65534
Number of beams for condition ON	2171	5	t16U	RW	0	MAX_BEAM	0	$0 . . .1776$
Number of beams for condition OFF	2171	6	t16U	RW	0	MAX_BEAM	0	$0 . . .1776$
Target center	2171	7	t16U	RW	0	MAX_BEAM	0	$0 \ldots 1776$
Target width	2171	8	t16U	R/W	0	MAX_BEAM	0	$0 . .1776$

All other 30 areas have to be configured in the same way as described in 2170 respectively 2171:

Leuze electronic CANopen-Interface

Measuring Light Curtain CML 720
Object describtion

Leuze electronic CANopen-Interface

Measuring Light Curtain CML 720
Object describtion

Commands

How to split the areas „automatically":
Transmit first the argument fort he command and than Index 2200, Subindex 1, Value 8

Parameter	$\begin{aligned} & \text { Index } \\ & \text { (Hex.) } \end{aligned}$	Subindex (Hex.)	Data type	Access	Min.Value	Max. Value	Default	Remark
Command Identifier	2200	1	t16U	RW				Task command during writing access: 0: Start Scan 1: Stop Scan 3: Teach 4: Reboot 5: Reset, deletes the user settings - see annotation page 1. With next power up process is the system starting in factory setting configuration. To reset on factory settings, it's necessary to send first reset and than reboot command. 6: Save 7: Clear Code 8: Splitting, Segmentation of beam areas
Command Argument	2200	2	t16U	RW				Argument at command 8 (Splitting): How should the beams splitted, or how many areas are needed? Enter number of areas 1 ...n: 1: all beams configured to one area 2: $n=2$: beams are splitted into 2 areas, both have same size 3: $n=3$: beams are splitted into 3 same size areas etc. .. (Bit: 0-7) 0: Result of area activ, if one beam is interrupted (AND) 1: Result of area activ, if all beams are interrupted (OR) (Bit: 8)

Measuring Light Curtain CML 720
Object describtion

| Teach-Status | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Teach-Status | 2400 | 1 | t08S | | RO | 0 | MAX
 T08U | Feedback about last teach result:
 0x00: Teach ok
 0x01: Teach busy
 0x80: Teach error (Bit8 = Errorbit) |

Alignment of the light curtains

Alignment level of first and last beam.
Please notice - values are different if function reserve changes..

Please notice - values are different if function reserve changes..								
Parameter	Index (Hex.)	Shindex (Hex)	Data type	Access	Min.- Value	Max. Value	Default	Remark
First Beam Intensity	2404	1	t16U	RO				Signal level at beam no. 1
Last Beam Intensity	2404	2	t16U	RO				Signal level at beam no. n

Leuze electronic CANopen-Interface

Measuring Light Curtain CML 720
Object describtion

Process data								
Parameter	$\begin{array}{\|l} \hline \begin{array}{l} \text { Index } \\ \text { (Hex.) } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { Subindex } \\ & \text { (Hex.) } \end{aligned}$	Data type	Access	Min.Value	Max. Value	Default	Remark
Processdata selection: FIB/FNIB (first interrupted / not interupted beam), LIB/LNIB (last interrupted / not interrupted beam), TIB/TNIB (total interrupted / not interrupted beams), Area Out 1-16 resp. 17-32, Digital In- Outputs								
First Interrupted Beam (FIB)	2405		t16U	RO				Number of first interrupted beam
First Not Interrupted beam (FNIB)	2406		t16U	RO				Number of first not interrupted beam
Last Interrupted Beam (LIB)	2407		t16U	RO				Number of last interrupted beam
Last Not Interrupted Beam (LNIB)	2408		t16U	RO				Number of last not interrupted beam
Total Interrupted	2409		t16U	RO				Summary of total interrupted beams
Total Not Interrupted Beams (TNIB)	240A		t16U	RO				Summary of total not interrupted beams
Code LoWord (CLW)	240B		t16U	RO				Customer specific solution
Code HiWord (CHW)	240C		t16U	RO				Customer specific solution
Area Output LoWord (ALW)	240D		t16U	RO				Logical output of first 16 areas
$\begin{aligned} & \text { Area Output HiWord } \\ & \text { (AHW) } \end{aligned}$	240E		t16U	RO				Logical output of area 17-32
Switching status of digital IO	240F		t16U	RO				Status image of pin 2 and pin 5

Leuze electronic CANopen-Interface

Measuring Light Curtain CML 720
Object describtion

Leuze electronic CANopen-Interface

Measuring Light Curtain CML 720
Object describtion

Status								
Information about status of light curtain								
Parameter	Index (Hex.)	Subindex (Hex)	Data type	Accessf	Min.Value	Max. Value	Default	Remark
Device Status	2162		t16S	RO			0	0: Normal function 1: Teach failure 2: Internal Temp./Voltage monitoring 3: Invalid configuration 4: Hardware failure 5: Voltage failure 24 V 6: Transmitter and receiver inconsistent 7: Missing connection to transmitter
RX Error Field	2600		t16U	RO				Only internal diagnostic
KX Error Field	2601		t16U	RO				Only internal diagnostic

Remarks:
t08U = type 8bit unsigned
t16U = type 16bit unsigned
t16S = type 16bit integer
MAX-BEAM = max. number of beams
MAX_T08U = max. 8bit unsigned
MAX_T16U = max. 16bit unsigned
MAX_T32U = max. 32bit unsigned

Leuze electronic CANopen-Interface

Measuring Light Curtain CML 720
 Object describtion

Appendix A:
Example to read out 64 beams:
Mapping of TPDO1 looks following:

MAPPINGENTRY1	0×24120110	
MAPPINGENTRY2	0×24120210	-> mapped is Index 0x2412 SubIndex 01 Length of mapped object is 16bit
MAPPINGENTRY3	0×24120310	
-> mapped is Index 0x2412 SubIndex 02 Length of mapped object is 16bit		
MAPPINGENTRY4	0×24120410	$->$ mapped is Index 0x2412 SubIndex 03 Length of mapped object is 16bit

Figure 73: Structure of TPDO mapping

It's possible to map per PDO 4×16 bit objects $\rightarrow 64$ beams
Into the PDO's can be mapped all data which are listed under headline "process data" (Index >2405)

Leuze electronic CANopen-Interface

Measuring Light Curtain CML 720

Object describtion

Appendix B

Example: Activation and deactivation of blanking areas

Example: Autom. configuration and acivation of 2 blanking areas by teach

How to configure 2 blanking areas by plc:

1) 0×2104 sub01: to 2 (required number of blanking areas $=2$ blanking areas allowed)
2) $0 x 2104$ sub02: to $1=$ activ (blanking-ares automatically configured by teach)
3) 0×2104 sub03: to 2 (Logical value 1 for blanked beams)
4) 0x2104sub06: to 2 (Logical value 1 for blanked beams)
5) $0 x 2200$ sub01: value 3 (Teach)

The internal processor calculates the values of objects $0 x 2104$ sub04 and 0×2104 sub05 as well as $0 x 2104$ sub07 and 0×2104 sub08 and saves the values remanent. With a successful teach are all other objects 0×2104 remanent saved, if 0×2103 sub02 is configured to value $0=$ Save persistent to Flash

Example: Deactivation of blanking areas

1) $0 x 2104$ sub01: to 0 (No blanking areas allowed)
2) 0×2104 sub02: to 0 (Autoblanking inactiv)
3) $0 x 2104$ sub03: to 0 (no beams blanked)
4) $0 x 2104$ sub06: to 0 (no beams blanked
5) 0x2200sub01: value 3 (Teach)

To be shure, that all blanking areas are deactivated, it's necessary that at object 0x2104sub1 until sub E all values set to 0 .

Leuze electronic CANopen-Interface

Measuring Light Curtain CML 720
Object describtion

Appendix C:

Example: How to setup configured areas (beam 1-32) to an output (pin 2)
There are different logical functionalities, depending on conditions for beams „ON" and „OFF"

Index	Description / Variables				
2170	Configuration Area 01				
2170	Area 01 Value: 1 = Activated				
Sub 1					
$\begin{aligned} & 2170 \\ & \text { Sub } 2 \end{aligned}$	Logic conditions	Value: 0 Normal - light switching	Value: 1 Inverted - dark switching	Value: 0 Normal - light switching	Value: 1 Inverted - dark switching
$\begin{aligned} & 2170 \\ & \text { Sub } 3 \end{aligned}$	Start beam Value:	1	1	1	1
$\begin{aligned} & 2170 \\ & \text { Sub } 4 \\ & \hline \end{aligned}$	End beam Value:	32	32	32	32
$\begin{aligned} & 2170 \\ & \text { Sub } 5 \end{aligned}$	Number of beams for condition ON Value:	32	32	1	1
$\begin{aligned} & 2170 \\ & \text { Sub } 6 \end{aligned}$	Number of beams for condition OFF Value:	31	31	0	0
	Digital IO settings				
2151	Configuration Pin 2 (PNPmode)				
$\begin{aligned} & 2151 \\ & \text { Sub } 4 \end{aligned}$	Selection input/output Value: $0=$ Output				
$\begin{aligned} & 2151 \\ & \text { Sub } 3 \end{aligned}$	Switching level Value: $0=$ Normal - light switching	Output 1, if all beams are not interrupted. Output 0 , if 1 beam interrupted or >1 beam interrupted.	Output 0, if all beams are not interrupted, resp. beam 1-31 are not interrupted. Output 1 , only if 32 beams interrupted.	Output 1, if all beams are not interrupted, resp. as long as 1-31 beams are not interrupted. Output 0 , if 32 beams interrupted.	Output 0, if all beams are not interrupted. Output 1 as soon as 1 beam is interrupted.
$\begin{aligned} & 2151 \\ & \text { Sub } 3 \end{aligned}$	Switching level Value: 1 = Inverted - dark switching	Output 0, if all beams are not interrupted. Output 1 , if 1 beam is interrupted or >1 beam interrupted. OR-Function	Output 1, if all beams are not interrupted, resp. 1-31 beams not interrupted. Output 0 , only if 32 beams interrupted. AND-Function	Output 0, if all beams are not interrupted, resp. as long as 1-31 beams are not interrupted. Output 1, if 32 beams interrupted.	Output 1, if all beams are not interrupted. Output 0 , as soon as 1 beam is interrupted.
$\begin{aligned} & 2151 \\ & \text { Sub } 1 \end{aligned}$	Output function Value: 1 = Switching output (area 1..32)				

Leuze electronic CANopen-Interface

Measuring Light Curtain CML 720
Object describtion

Mapping of configured Area 01 to Pin 2		
2155	Digital Output 2 Settings	
2155	Area mapping 32	
Sub 3	$\ldots 1$ (logical or)	
	0 b0000000000000000000000000000001	
	0×00000001	

Mapping of configured Area 08 to Pin 2		
2155	Digital Output 2 Settings	
2155	Area mapping 32	
Sub 3	$\ldots 1$ (logical or)	0b00000000000000000000000010000000
		0×00000080

Mapping of configured Areas 01 and 08 to Pin 2 (OR)		
2155	Digital Output 2 Settings	
2155	Area mapping 32	
Sub 3	$\ldots 1$ (logical or)	0 b0000000000000000000000010000001
		0×00000081

Mapping of configured Areas 01 v 02 v 08 v 32 to Pin $2(\mathrm{OR})$		
2155	Digital Output 2 Settings	
2155	Area mapping 32	
Sub 3	$\ldots 1$ (logical or)	0b10000000000000000000000010000011
		0×80000083

Example: Digital output Pin 2 switching, as soon as one beam is interrupted.

(Measuring field length 32 beams)
How to configure pin 2 by plc:

1) 0×2170 sub01: to 1 (Area 01 activated)
2) 0×2170 sub02: to 0 (Light switching)
3) 0×2170 sub03: to 1 (Start beam of area)
4) $0 x 2170$ sub04: to 32 (End beam of area)
5) 0×2170 sub05: to 32 (Number of beams for condition ON)
6) 0×2170 sub06: to 31 (Number of beams for condition OFF)
7) 0×2151 sub01: to 1 (Output function = switching output)
8) 0×2151 sub03: to 1 (Switching level Inverted)
9) 0×2151 sub04: to 0 (Pin $2=$ output $)$
10) 0×2155 sub03: to 1 (Bit-Mapping of area 01 to Pin 2)

Leuze electronic CANopen-Interface

Measuring Light Curtain CML 720

Object describtion

Appendix D: Hole recognition

Example: Hole detection at a web and signalization of a hole at output pin 2
There are different settings at logical functions. Please take care of the still interrupted beams
Configuration of beam width and hole size:

Index	Describtion / Variables		
2170	Configuration area 01		
2170 Sub 1	Area 01 Value: 1 = Activated	0×01	This area has to be mapped (later on) to output pin 2
2170 Sub 2	Logic condition of area Value: 1 = Inverted - dark switching	0×01	Beams are interrupted depending of web width, therefore logical function is dark switching.
2170 Sub 3	Start beam of area (web) Value:5	5	Beginning at beam no. 5 analysis of hole recognition starts. If it's not shure, that web is always interrupting beam no. 5 , so it will be saver to configure no. 6 or even no. 7
2170 Sub 4	End beam of area (web) Value:25	25	Beginning at beam no. 25 analysis of hole recognition ends. If it's not shure, that web is always interrupting beam no. 25 , so it will be saver to configure no. 24 or even no. 23
2170 Sub 5	Number of beams for condition ON Value:21	21	With this kind of setting, area /output is switching as soon as ≥ 1 is not interrupted.
2170 Sub 6	Number of beams for condition OFF Value:20	20	
Example for detection from ≥ 2 not interrupted beams			
2170 Sub 5	Number of beams for condition ON Value:20	20	With this kind of setting, area /output is switching as soon as ≥ 2 is not interrupted.
2170 Sub 6	Number of beams for condition OFF Value:19	19	
Example for detection from ≥ 3 not interrupted beams			
2170 Sub 5	Number of beams for condition ON Value:19	19	With this kind of setting, area /output is switching as soon as ≥ 3 is not interrupted.
2170 Sub 6	Number of beams for condition OFF Value:18	18	

Leuze electronic CANopen-Interface

Measuring Light Curtain CML 720
Object describtion

Configuration of related switching output:

Index	Describtion / Variables		
	Switching output configuration		
2151	Configuration Pin 2 (PNP mode)		
$\begin{aligned} & \hline 2151 \\ & \text { Sub } 1 \end{aligned}$	Output function Value: 1 = Switching output (area 1..32)	0x00000001	
$\begin{aligned} & 2151 \\ & \text { Sub } 3 \end{aligned}$	Switching level Value: 0 = Normal - light switching	Switching level Value: 1 = Inverted - dark switching	Configuration depending of logical behaviour of output
$\begin{aligned} & 2151 \\ & \text { Sub } 4 \end{aligned}$	Selection input/output Value: $0=$ Output	0x00000000	

Mapping of area to switching output pin 2:

Mapping of configured Area 01 to Pin 2		
2155	Digital Output 2 Settings	
2155	Area mapping 32	
Sub 3	$\ldots 1$ (logical or)	0×00000001

