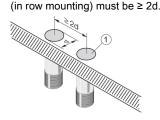
▲ Leuze electronic

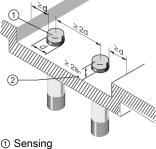
Manual - Capacitive Sensor LCS


Safety Instructions and Functions and Features

- Please read the product description prior to set-up of the unit. Ensure that the product is suitable for your application without any restrictions. ٠
- The unit conforms to the relevant regulations and EC directives.
- Improper or non-intended use may lead to malfunctions of the unit or to unwanted effects in your application. •
- That is why installation, electrical connection, set-up, operation and maintenance of the unit must only be carried out by qualified personnel authorized by the machine operator.
- The capacitive sensor detects without contact metals, almost all plastics, glass, ceramics, wood, paper, oils, greases, water and all hydrous materials and indicates their presence by providing a switched signal.

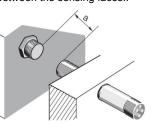
Mounting Restrictions

Flush-mount (shielded) proximity switches


... can be installed with their sensing faces flush to the metal. The distance between two proximity switches

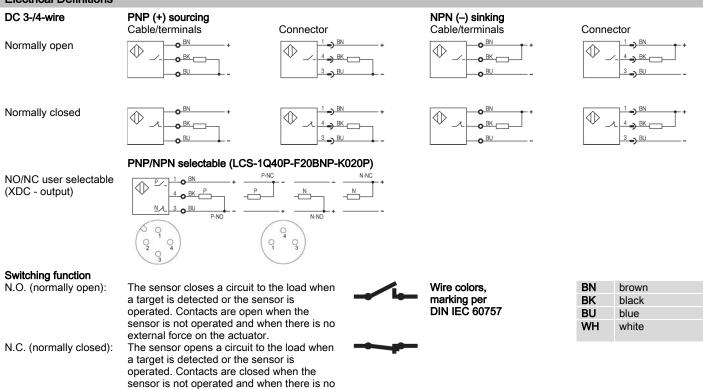
Sensing

Non-flush-mount (unshielded) proximity switches


The sensing face must extend $\geq 2s_n$ from the metallic installation medium. The distance between two proximity switches must be ≥ 2d

Opposing installation of 2 sensors

... requires a minimum distance of $a \ge 4d$ between the sensing faces.



external force on the actuator.

To ensure that the sensors are not mechanically destroyed during installation, make sure that you comply with the following torque figures.

Housing size	Material	Tightening torque
M12×1	V2A	40 Nm
M18×1	V2A	60 Nm
M30×1,5	V2A	90 Nm

Electrical Definitions

Adjustment

Flush (shielded) Sensors

Flush mountable sensors are normally being used for presence detection of objects or for indirect point level detection of solids, powders or liquids. The following two setup routines help to assure proper setup and operations. All LCS sensors allow sensitivity adjustment potentiometer.

Object

Presence Detection of Solid Objects

The following procedures are outlined for setting a normally open capacitive sensor for ideal sensing conditions:

- Mount the sensor in the actual sensing position
- Set up the target for the worst case condition. This means for a presence detection application to move the object to the farthest occurring position from the sensor.
- All LCS capacitive sensors are already factory preset to their maximum operational sensing range. The sensor has to move closer to the target object, if the farthest object position does not assure a reliable switching. Alternatively, a larger sensor with a larger sensing range can be chosen.
- The sensitivity can now be reduced by turning the potentiometer CCW until the sensor switches off. Increase now the sensitivity

CW by 1/2 turn to set the sensor to its optimal sensitivity setting.

Example

In the following example, a shielded capacitive sensor in a M12 tubular housing will be used to detect a ceramic plate.

The sensor is factory preset to a maximum rated switching distance s_n of 4 mm to metal or by approximation to your hand. When moving the sensor towards the target object, the rated switching distance s_n to the ceramic plate has been reduced to approx. 2 mm. This distance is now the maximum permissible switching distance for the ceramic plate.

Note:

To ensure that Leuze LCS capacitive sensors work reliably within their technical specifications, they have a greater sensing distance than the indicated maximum rated switching distance s_n in the datasheet. If the user decides to adjust the sensor to a switching distance greater than 2 mm for the above described ceramic plate, the sensor will operate in an unreliable mode. This entails a risk that temperature and other environmental factors or electrical interferences may lead to unreliable switching conditions.

Fluid

Point-Level Detection through Container Walls Empty Setup (normally open)

- Mount the sensor in the actual level sensing position flush to the non-metallic container wall.
- All LCS capacitive sensors are already factory preset to their maximum operational sensing range. The sensor will initially trigger on the container wall material.
- The sensitivity has to be reduced by turning the potentiometer CCW until the sensor switches off. Increase now the sensitivity CW 3. by 1/2 turn to set the sensor to its optimal sensitivity setting.
- The sensor should switch on at 40% to 50% sensing area coverage - readjust the sensitivity CCW if the coverage is above 50% and CW if it is below 40%.

Full Setup (normally open)

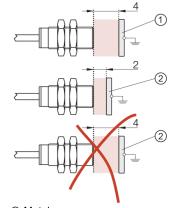
- 1. Mount the sensor in the actual level sensing position flush to the non-metallic container wall.
- All LCS capacitive sensors are already factory preset to their maximum operational sensing range. The sensor will initially switch on to the container wall.
- The sensitivity has to be reduced by turning the potentiometer CCW until the sensor switches off. Increase now the sensitivity CW by 1/2 turn to set the sensor to its optimal sensitivity setting.
- The sensor should switch on at 40% 50% sensing area coverage - readjust the sensitivity CCW if the coverage is above 50% and CW if it is below 40%.

Note:

The partition wall may only be made of glass or plastic. A rule of thumb for the maximum thickness of the wall yields a value of approx. 10 to 20% of the sensor's rated switching distance, but max. 4 mm.

Non-Flush (unshielded) Sensors

These capacitive sensors use a larger spherical electrical field which is especially suited as level detectors for liquids, granulates or powders.


Plastic

Direct Point-Level detection

Full Setup (normally open)

- Mount the sensor in the actual level sensing position with regards to the minimum clearance guide line in our mounting reference.
- All LCS capacitive sensors are already factory preset to their maximum operational sensing range. The sensor will initially switch on contact with the target material.
- The sensitivity has to be reduced by turning the potentiometer CCW until the sensor switches off. Now increase the sensitivity CW by 1/2 turn to set the sensor to its optimal sensitivity setting.

This setup procedure assures that the influence of temperature and material build-up has been reduced to a minimum. In some instances,the target material creates extensive material buildup or has a very high relative dielectric constant (conductivity) leading to uncontrollable repetitive false triggering.

Metal
Ceramic

Wall thickness (max. 4 mm glass or plastic)
Water

Wall
Plastic granulate

CCW

(1)

CK

Important: Different material properties and conditions have to be taken into consideration during the calibration process. All Leuze LCS capacitive sensors are therefore equipped with highly accurate trim potentiometers to adjust the device's sensitivity. Turning the potentiometer clockwise (CW) increases the sensitivity, whereas counter-clockwise (CCW) turning reduces it.

counter-clockwise

clockwise

▲ Leuze electronic