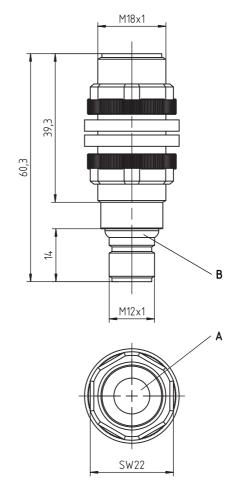
Ultrasonic sensors with analog output

[,,,))

1((((

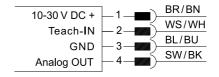
40 ... 300 mm 80 ... 1200 mm

- Function largely independent of surface properties, ideal for detection of liquids, bulk materials, transparent media, ...
- Small dead zone at long scanning range
- 1 analog output 0 ... 10V or 4 ... 20mA
- Teachable characteristic curve
- Extra short construction
- NEW Stable plastic design
- **NEW** Temperature-compensated scanning range



Accessories:

(available separately)


- Mounting systems
- Mounting adapter M18-M30: BTX-D18M-D30 (Part no. 50125860)
- Cables with M12 connector (KD ...)
- Teach adapter PA1/XTSX-M12 (Part no. 50124709)

Dimensioned drawing

- Active sensor surface Α
- В Indicator diodes

Electrical connection

Technical data

Ultrasonic specifications

Scanning range 1) Adjustment range Ultrasonic frequency Typ. opening angle Resolution
Direction of beam Reproducibility
Switching hysteresis Temperature drift

Timing

Readiness delay

Electrical data

Operating voltage U_B ⁵⁾ Residual ripple Open-circuit current Analog output

Load resistance

Characteristic curve adjustment

Analog output error signal

Indicators

Yellow LED Yellow and green LEDs flash Green LED

Mechanical data

Housing Active surface Weight Ultrasonic transducer Connection type Fitting position

Environmental data

Ambient temp. (operation/storage) Protective circuit 7) VDE protection class Degree of protection Standards applied Certifications

At 20°C

Target: 100mm x 100mm plate

From end value

Over the temperature range -20°C ... +70°C

For UL applications: use is permitted exclusively in Class 2 circuits according to NEC

The ceramic material of the ultrasonic transducer contains lead zirconium titanate (PZT)

1=short-circuit and overload protection, 2=polarity reversal protection, 3=wire break and inductive protection

These proximity switches shall be used with UL Listed Cable assemblies rated 30V, 0.5A min, in the field installation, or equivalent (categories: CYJV/CYJV7 or PVVA/PVVA7)

DMU318-300/...-M12 DMU318-1200/...-M12

40 ... 300mm ²⁾ 80 ... 1200mm ²⁾ 40 ... 300mm 300kHz 80 ... 1200mm 200kHz 7° ± 2 $8^{\circ} \pm 2^{\circ}$ < 2mm < 2mm Axial Axial ± 0.5 % 1) 3) 1 % 3) ± 0.5 % 1) 3) 1 % 3) $\leq 5\% ^{4)}$ ≤ 5 % ⁴⁾

< 100 ms < 100 ms

10 ... 30 V DC (incl. \pm 5% residual ripple) \pm 5% of U_B

≤ 35mA

1 analog output 4 ... 20mA

1 analog output 4 ... 2UMA
1 analog output 0 ... 10V
Current output: $R_L \le 500\Omega$,
Voltage output: $R_L \ge 2k\Omega$ 1-point teach: teach-in (pin 2) 2 ... 7s to GND,
2-point teach: teach-in (pin 2) 7 ... 12s to GND,
Characteristic curve inversion: teach-in (pin 2) > 12s to GND

Distance too small: approx. 3.8mA,

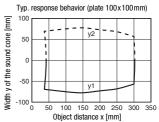
Distance too large: approx. 11 V / approx. 21 mA

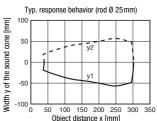
Analog OUT: object detected Teach-in / teaching error Object within the scanning range

Plastic (PBT) Epoxy resin, glass fiber reinforced 65g

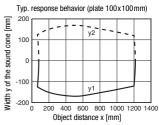
Piezoceramic 6) M12 connector, 4-pin

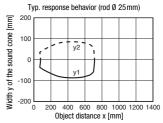
Anv

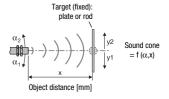

-20° ... +70°C/-20° ... +70°C 1, 2, 3


IP 67 EN 60947-5-2

UL 508, CSA C22.2 No.14-13 5) 8)


Diagrams


DMU318-300/...-M12



DMU318-1200/...-M12

Notes

Observe intended use!

- 🖔 This product is not a safety sensor and is not intended as personnel protection.
- The product may only be put into operation by competent persons.
- Solution by competent personal of the conference of the product in accordance with its intended use.

Ultrasonic sensors with analog output

Part number code

D M U 3 1 8 - 1 2 0 0 . 3 / C T - M 1 2

Operating principle

HTU Ultrasonic sensor, scanning principle, with background suppression

DMU Ultrasonic sensor, distance measurement

RKU Ultrasonic sensor, retro-reflective ultrasonic sensor principle

Series

318 series, cylindrical short M18 design

Scanning range in mm

300 40 ... 300 **1200** 80 ... 1200

Equipment (optional)

.3 Teach button on the sensor

Pin assignment of connector pin 4 / black cable wire (analog OUT/OUT1)

4 PNP output, NO contact preset

P PNP output, NC contact preset

2 NPN output, NO contact preset

N NPN output, NC contact preset

C Analog output 4 ... 20 mA

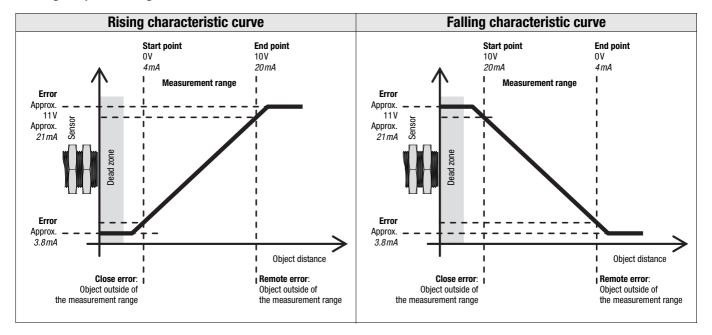
V Analog output 0 ... 10V

Pin assignment of connector pin 2 / white cable wire (Teach-IN)

T Teach input

Connection technology

M12 M12 connector, 4-pin


Order guide

The sensors listed here are preferred types; current information at www.leuze.com.

	Designation	Part no.
Scanning range / Analog output		
40 300 mm / current output 4 20 mA	DMU318-300/CT-M12	50136073
40 300 mm / voltage output 0 10 V	DMU318-300/VT-M12	50136072
80 1200mm / current output 4 20mA	DMU318-1200/CT-M12	50136077
80 1200mm / voltage output 0 10V	DMU318-1200/VT-M12	50136076

Device functions - analog output

Analog output Analog OUT

Note!

When setting the analog output (teach) via the teach input, one **rising characteristic curve** is always taught; with 2-point teach, independent of the selected object distances near/far. The characteristic output curve can be inverted, however.

Ultrasonic sensors with analog output

Setting the analog output (teach) via the teach input

On delivery, the characteristic output curve of the sensor is set as a rising characteristic curve with spread over the entire scanning range: 4 ... 20mA or 0 ... 10V corresponds to an object distance of 40 ... 300mm or 80 ... 1200mm, respectively.

The analog output can be set by means of 1-point teach or 2-point teach.

 \bigcirc

Note!

When setting the analog output (teach) via the teach input, one **rising characteristic curve** is always taught; with 2-point teach, independent of the selected object distances near/far. The characteristic output curve can be inverted, however.

1-point teach of the analog output

By selecting an object distance within the scanning range, the characteristic curve of the analog output can be adjusted. Leuze Teach Adapter **PA1/XTSX-M12** can be used for this purpose.

If an object is located outside of the taught measurement range, an error signal is output. A different analog signal is output here by the sensor for the errors "distance too close: object outside of the measurement range" and "distance too far: object outside of the measurement range".

1-point teach - rising characteristic curve

1. Place object at desired distance for the end point of the measurement range.

Note: The minimum object distance for the end of the measurement range is as follows: scanning range of 300 mm:70 mm scanning range of 1200 mm:200 mm

- 2. To adjust analog output Analog OUT, connect the teach-in input to GND for 2 ... 7s until the yellow and green LEDs flash simultaneously at 3Hz.
- 3. The characteristic curve with plot rising from the start of the range (30 mm or 80 mm) to the set object distance was taught in.
- 4. Error-free teach: LED states acc. to "Technical data" -> "Indicators".

Faulty teach: green and yellow LEDs flash at 8Hz until an error-free teach is performed.

2-point teach of the analog output

By selecting 2 object distances within the scanning range, the characteristic curve of the analog output can be adjusted. Leuze Teach Adapter **PA1/XTSX-M12** can be used for this purpose.

If an object is located outside of the taught measurement range, an error signal is output. A different analog signal is output here by the sensor for the errors "distance too close: object outside of the measurement range" and "distance too far: object outside of the measurement range".

2-point teach - rising characteristic curve

- 1. Position the object at the first desired distance (near or far).
- To adjust analog output Analog OUT, connect the teach-in input to GND for 7 ... 12s until the yellow and green LEDs flash alternately at 3Hz.
- 3. The sensor remains in teach mode and the LEDs continue to flash.
- 4. Then position the object at the second desired distance (far or near).

Note: the minimum object distance between the start and end point of the measurement range for a scanning range of 300mm is:30mm for a scanning range of 1200mm is:120mm

5. To complete the teach event, briefly connect the Teach-IN input to GND again.

The characteristic curve with rising plot from the near to the far object distance was taught in.

6. Error-free teach: LED states acc. to "Technical data" -> "Indicators".

Faulty teach: green and yellow LEDs flash at 8Hz until an error-free teach is performed.

Inverting the analog output (falling/rising characteristic curve)

The characteristic curve of the analog output can be inverted, e.g., if a falling characteristic output curve is desired. Leuze Teach Adapter **PA1/XTSX-M12** can be used for this purpose.

Inverting the characteristic curve

- To invert the characteristic curve of the analog output Analog OUT, connect the teach-in input to GND for > 12s until the yellow and green LEDs flash alternately.
- 2. Disconnect the Teach-IN input from GND. The characteristic curve plot was inverted.

The **yellow LED** indicates the current setting of the analog output:

ON = **rising** characteristic curve

OFF = **falling** characteristic curve

Resetting to factory settings

The sensor can be reset to the factory setting (rising characteristic curve with spread over the entire scanning range). Leuze Teach Adapter **PA1/XTSX-M12** can be used for this purpose.

Resetting to factory settings

- 1. When switching on the power supply (during Power-On), connect the Teach-IN input to GND for > 5s.
- 2. Disconnect the Teach-IN input from GND. The green and yellow LEDs flash alternately and very quickly for a brief time.
 The sensor was reset to the factory setting:
 - 4 ... 20mA or 0 ... 10V corresponds to an object distance of 40 ... 300 mm or 80 ... 1200 mm, respectively.